X
تبلیغات
مهندسی ساخت و تولید - همه چیز در باره امواج فرا صوت( ULTRA- SUNIC)

مهندسی ساخت و تولید

وبلاگ تخصصی ماشین ابزار

همه چیز در باره امواج فرا صوت( ULTRA- SUNIC)

دید کلی

  • تصور شما از موج صوتی چیست؟
  • چرا وقتی به یک شی ضربه می‌زنیم صدا تولید می‌شود؟
  • فکر می‌کنید که صوت می‌تواند در خلا منتشر شود؟
  • پدیده‌هایی مانند تاخل ، انعکاس و ... در مورد صوت چگونه بررسی می‌گردند؟
  • امواج صوتی جزو کدام گروه از امواج عرضی یا طولی است؟

    هوا دارای خاصیت ارتجاعی می‌باشد هنگامی که یک لایه از مولکولهای هوا به جلو رانده می‌شود، این لایه به نوبه خود لایه دیگری را به جلو می‌راند و خود به حال اول بر می‌گردد. لایه جدیدی نیز لایه دیگری را به جلو می‌راند و به همین ترتیب این عمل بارها و بارها تکرار می‌گردد تا انرژی به پایان برسد. این جابجایی مولکولها اگر بیش از 16 مرتبه در ثانیه تکرار می‌گردد صدا بوجود می‌آید. هر رفت و برگشت لایه هوا یک سیکل نام دارد و تعداد سیکل در ثانیه تواتر یا بسامد یا فرکانس نامیده می‌شود.



img/daneshnameh_up/0/09/tuning_fork_wave_animated.gif

موج صوتی چیست؟


امواج صوتی ، امواج مکانیکی طولی هستند. این فیزیک امواج می‌توانند در جامدات ، مایعات و گازها منتشر شوند. ذرات مادی منتقل کننده این فیزیک امواج ، در راستای انتشار موج نوسان می‌کنند. فیزیک امواج مکانیکی طولی در گستره وسیعی از بسامدها به وجود می‌آیند و در این میان بسامدهای فیزیک امواج صوتی در محدوده‌ای قرار گرفته‌اند که می‌توانند گوش و مغز انسان را برای شنیدن تحریک کنند.

این محدوده تقریبا از 20 هرتز تا حدود 20000 هرتز است و گستره شنیده شدنی نامیده می‌شود. فیزیک امواج مکانیکی طولی را که بسامدشان زیر گستره شنیده شدنی باشد امواج فرو صوتی ، و آنهایی که بسامدشان بالای این گستره باشد ، امواج فراصوتی گویند.

تولید صوت


هر گاه به جسمی ضربه می‌زنیم لایه‌های هوا بین دست ما در جسم جابجا می‌شوند و اگر این جابجاییها بیش از 16 بار در ثانیه باشند، صدا ایجاد می‌شود. برای اینکه بهتر بتوانیم نقش اندامهای گفتار را در تولید آواهای زبان فارسی مورد مطالعه قرار دهیم، ابتدا به نظر می‌رسد لازم است مطالب مختصری درباره چگونگی تولید آوا یا صوت ارائه کنیم.
آوا یا صوت از ارتعاش مولکولهای هوا حاصل می‌شود. ارتعاش یعنی حرکت مولکولهای هوا از جای خود در مسیر معین و بازگشت آنها به جای اولیه. این پدیده فیزیکی را اصطلاحا موج می‌نامیم. برای آنکه بتوانیم یک تصویر تقریبی از طرز بوجود آمدن موج صوتی را مجسم کنیم پاندولی را در نظر می‌گیریم. اگر وزنه پاندول را به یک طرف کشیده آن را رها سازیم، پاندول با سرعت ، به منتهی الیه طرف دیگر رفته دوباره در همان مسیر بجای اول می‌گردد. این حرکت به دفعات زیاد صورت می‌گیرد، ولی در هر دفعه خط سیر آن اندکی کوتاهتر می‌شود تا اینکه وزنه پاندول دوباره به حالت اولیه یعنی سکون در آید.
وزنه پاندول در این حرکت ، لایه‌ای از مولکولهای هوا را با خود به جلو می‌راند و این عمل موجب می‌شود که در یک سوی وزنه ، رقت مولکولی در سوی دیگر تراکم مولکولی ایجاد شود. رقت یعنی زیاد شدن فاصله بین مولکولها و تراکم یعنی کم شدن فاصله آنها. اگر با دو دست یک لاستیک را بکشیم طول لاستیک زیاد می‌شود یا به سخن دیگر ، لاستیک کش می آید.
علت این موضوع آن است که فاصله بین مولکولها در قسمتهای میانی لاستیک زیاد شده و مولکولها بین دو سر لاستیک زیاد شده و مولکولها به طرف دو سر لاستیک کشانده می‌شوند و در نتیجه فاصله میان مولکولها در دو سر لاستیک کم می‌شود. بدین ترتیب در قسمت میانی لاستیک رقت مولکولی و در دو سر آن تراکم مولکولی ایجاد می‌شود. اکنون اگر دو سر لاستیک را رها کنیم مولکولها دوباره به جای اولیه خود بر می‌گردند.


خاصیت ارتجاعی هوا

هوا نیز دارای همین خاصیت ارتجاعی است، منتهی به مراتب بیشتر از لاستیک. هر رقت و تراکم مولکولی در هوا موجب رقت و تراکمهای دیگر می‌گردد. بدین معنی که ، هنگامی که یک لایه از مولکولهای هوا به جلو رانده می‌شود این لایه به نوبه خود لایه دیگری را به جلو می‌راند و خود به حال اول بر می‌گردد. لایه جدیدی نیز لایه دیگری را ، و به همین ترتیب این عمل بارها و بارها تکرار می‌گردد تا انرژی به پایان برسد. این جابجایی مولکولها اگر بیش از 16مرتبه در ثانیه تکرار گردد صدا بوجود می‌آید.

اگر کتابی را از ارتفاع معینی به طرف زمین رها کنیم بر اثر سقوط کتاب ، فشار هوای بین کتاب و زمین زیاد می‌شود و این فشار ، مولکولهای هوا را به اطراف می‌راند. مولکولهای رانده شده به نوبت مولکولهای مجاور خود را به جلو رانده و خود به حالت اول بر می‌گردند. این عمل آنقدر تکرار می‌شود تا انرژی حاصل از سقوط کتاب به پایان برسد. هنگام تماس کتاب با زمین صدایی به گوش می‌رسد، در صورتی که در اثنای سقوط آن صدایی شنیده نمی‌شود.

علت این است که هنگام تماس کتاب با زمین ، بر اثر زیاد بودن مقدار انرژی جابجا شدن مولکولها یا همان رقت و تراکم هوا خیلی بیشتر از 16 مرتبه در ثاینه است و به این علت صدای حاصله قابل شنیدن می‌باشد. هر رقت و تراکم یک سیکل نام دارد و تعداد سیکل در ثانیه تواتر یا بسامد نامیده می‌شود. بنابراین ، وقتی می‌گوییم فرکانس (تواتر) موج مثلا 500 سیکل است، یعنی 500 مرتبه رقت و تراکم در مولکولهای هوا ایجاد شده است. هر قدر بسامد بیشتر باشد صدا به اصطلاح زیرتر است و نیز قدر بسامد کمتر باشد صدا اصطلاحا بمتر است.

چشمه فیزیک امواج فروصوتی و فراصوتی

فیزیک امواج فروصوتی که با آنها سروکار داریم معمولا توسط چشمه‌های بزرگ تولید می‌شوند. امواج زمین لرزه‌ای از آن جمله‌اند. بسامدهای بالای مربوط به فیزیک امواج فراصوتی را می‌توان به وسیله ارتعاشات کشسان یک بلور کوارتز که بر اثر تشدید با یک میدان الکتریکی متناوب در بلور القا شده است ، ایجاد کرد. به این طریق می‌توان بسامدهای فراصوتی به بزرگی 6x108 هرتز تولید کرد. طول موج متناظر با این بسامد در هوا در حدود 5x10-5 سانتی‌متر است که همان حدود طول موج نور مرئی است.

مشخصات فیزیکی

جابجایی یا ارتعاش مولکولهای هوا در تمام جهات صورت می‌گیرد و بسته به مقدار انرژی موجود ، هر لایه از مولکولها مسافتی را طی می‌کنند. به سخن دیگر هر چه انری بیشتر باشد مسافتی را که موج می‌پیماید بیشتر است. طول مسافتی را که هر طبقه از مولکولهای هوا طی نموده و دوباره به جای اولیه خود بر می‌گردد دامنه نوسان نامند. هر چه آن مسافت زیادتر باشد صدا بلندتر است. بلندی صدا را با زیر و بمی آن نباید اشتباه کرد، زیرا بلندی صدا مربوط به تعداد ارتعاش در ثانیه است.

بنابراین صدای ممکن است بم ولی بلند باشد. بالعکس صدای دیگری ممکن است زیر ولی کوتاه باشد. اگر امواج صوتی در مسیر حرکت خود به جسمی از قبیل پرده گوش برخورد کنند و آن را به همان اندازه مرتعش سازند، ارتعاش پرده گوش بوسیله اندامهای گوش داخلی به مراکز اعصاب شنوایی منتقل گشته و در نتیجه صدا شنیده می‌شود و عکس العمل لازم صادر می‌شود.



 

چشمه فیزیک امواج شنیده شدنی

فیزیک امواج شنیده شدنی در تارهای مرتعش (بلندگو ، طبل) ایجاد می‌شوند. همه این عناصر مرتعش به تناوب هوای پیرامون خود را در حرکت به طرف جلو ، فشرده و در حرکت به طرف عقب ، رقیق می‌کنند. هوا این آشفتگیها را بصورت موج از چشمه به خارج انتقال می‌دهد. این فیزیک امواج به هنگام وارد شدن در گوش ، احساس صوت را بوجود می‌آورند. موجهایی که تقریبا متناوب هستند و یا تعداد کمی از مؤلفه‌های تقریبی متناوب را شامل می‌شوند، احساس خوشایندی بوجود می‌آورند (اگر شدت خیلی زیاد نباشد) اصوات موسیقی از این جمله‌اند. صوتی که شکل موج آن متناوب نباشد ، بصورت نوفه شنیده می شود. نوفه را می‌توان برهمنهشی از امواج متناوب دانست که در آن تعداد مؤلفه‌ها خیلی زیاد است.

یک آزمایش ساده

دو سر یک سیم فولادی به طول یک متر و به قطر یک میلیمتر را که کشیده شده و بوسیله دو قطعه سنگ یا آهن محکم شده است ، در نظر می‌گیریم. حال اگر وسط سیم را به کناری کشیده و رها کنیم صدایی شنیده نمی‌شود، در صورتی که ارتعاش آن کاملا به چشم دیده می‌شود. ولی اگر یک طرف سیم را به کنار یک لنگه در تخته‌ای متصل کنیم و آزمایش را دوباره انجام دهیم، صدای آن کاملا شنیده می‌شود، با وجود آنکه ارتعاش آن مشهود نیست. علت این امر آن است که در دفعه اول هوای مجاور سیم بجای اینکه تراکم و انبساط پیدا کند، روی سیم لغزیده است و در مرتبه دوم هوای مجاور لنگه در ، مجال لغزیدن و رسیدن به کنار آن را قبل از تجدید ارتعاش نداشته است.

امواج صوتی در جامدات و مایعات

همانطور که درون هوا ارتعاشات طولی توام با تراکم و انبساط منتشر می‌شود، به همان طریق نیز ارتعاشات طولی توأم با تراکم و انبساط در داخل مایعات و جامدات انتشار پیدا می‌کنند. اگر میله فلزی را برای لحظه کوتاهی در امتداد خودش کشیده و رها کنیم ، تراکم و انبساط در طول میله انتشار پیدا خواهد کرد و همین طور اگر نقطه‌ای از جسم جامد را مرتعش سازیم (به عنوان مثال با چکش به گوشه یک قطعه سنگ یا فلز بزنیم) تراکم و انبساط به شکل سطوح کروی در تمام جسم مرتعش منتشر می‌شوند.

مخصوصا نباید چنان کرد که انتشار تراکم و انبساط درون اجسام مختص به ارتعاشات شنیدنی است، بلکه هر نوع ارتعاش با هر فرکانس ممکن است در آنها انتشار یابد. تنها فرقی که جامدات و مایعات در انتقال صوت با هوا و گاز دارند در زیاد بودن سرعت انتشار صوت در آنهاست.



img/daneshnameh_up/c/c3/W0615E11.JPG

مشاهدات تجربی

  • چیزی که در موقع انتشار صوت در هوا انتقال می‌یابد، هوا نیست. به دلیل اینکه صدای هواپیما از ابر و دود غلیظ عبور کرده و به ما می‌رسد. بدون آنکه ابر را پراکنده ساخته و با خود به طرف ما بیاورد.

  • هوا در حین انتشار صوت جلو و عقب می‌رود. یعنی مرتعش می‌شود. برای مشاهده این امر کافی است یک قطعه فیلم عکاسی را بین دو انگشت گرفته و در مقابل آن با آواز بلند بخوانیم، در اینصورت حرکت رفت و آمد تند فیلم را به خوبی در محل اتصال انگشتان خود با فیلم حس می‌نماییم.

  • عبور فیزیک امواج صوتی در هوا با کم و زیاد شدن فشار (انبساط و تراکم) همراه می‌باشد. در جدار لوله صوتی سوراخی درست کرده و سپس ورقه نازک کاغذی روی آن می‌چسبانیم و از خارج به این کاغذ پاندول سبک ساده از چوب آقطی آویزان نموده و لوله را بطور افقی نگاه به بالا و پایین رفتن می‌کند. اگر تنها هوا حرکت می‌کرد و اختلاف فشار در آن وجود نداشت پاندول رفت و آمد نمی‌کرد زیرا حرکت ارتعاشی هوای درون لوله موازی با سطح کاغذ بوده و ممکن نبود که تولید حرکت متناوب در ورقه کاغذ بنماید.

  • در نتیجه وجود همین انبساط و تراکم ، در فیزیک امواج صوتی ، اختلاف چگالی متناوب پیدا می شود. زیرا اگر تغییر فشار را در فیزیک امواج صوتی قبول کنیم لازم است که تغییر چگالی در آنها رانیز قبول کنیم. به کمک چندین پاندول که در طول لوله صوتی افقی بطریق فوق آویزان کرده‌ایم می‌توانیم ثابت کنیم که هنگام ایجاد صوت در لوله ، پاندولی که نزدیکتر به دهانه لوله است زودتر از پاندولهای دیگر به ارتعاش در می‌آید.

    پس وقتی قسمتی از هوای درون لوله در داخل آن به سمت انتهای آن حرکت کرده و قسمت دیگری از هوای درون لوله ساکن است، ناچار چگالی قسمتی که بین این دو قسمت متحرک و ساکن قرار دارد ، تغییر کرده است. موضوع وجود اختلاف چگالی در هوای مرتعش عملا به تحقیق رسیده است و از تغییر چگالی هوا در موقع ارتعاش که باعث تغییر ضریب شکست می‌شود، استفاده کرد. و فیزیک امواج صوتی را به کمک جرقه الکتریکی عکسبرداری نموده‌اند.

تولید ماورای صوت

 
مقدمه

علم صوت به معنی وسیع کلمه تولید ، تراگسیل و دریافت انرژی بصورت ارتعاش در ماده است. اگر اتمها و مولکولهای شاره یا جامد از اوضاع طبیعی خود تغییر مکان یابند، نیروی الاستیک در آن پدید می‌گردد، که مربوط به سختی جسم است و می‌خواهد جسم را به حالت نخست باز گرداند، این را نیروی برگرداننده گویند. تأثیر این نیروی الاستیک برگرداننده توأم با خاصیت اینرسی دستگاه ، ماده را برای ارتعاشهای نوسانی و در نتیجه تراگسیل موجهای آکوستیکی قابل می‌سازد. امواج صوتی امواج مادی بوده که هم طولی و هم عرضی می‌تواند باشد. در شاره ها بصورت طولی است و در محیطهای دیگر هم بصورت طولی و هم بصورت عرضی است. یعنی فرضا اگر صوت وارد یک ماده جامد شود، به موج طولی و عرضی با سرعتهای متفاوت تجزیه می‌شود.



تصویر




امواج ماورای صوت را به روشهای مکانیکی و الکتریکی و مغناطیسی می‌توان تولید کرد. ابزار مکانیکی تولید ماورای صوت عبارت است از: سیرن ، سوتک گالتن ، مولد الکتریکی ، مولد مغناطیسی ، نوسانگر پیزو الکتریک و نوسانگر مانیتواستریکتیو که در زیر برخی از آنها که کاربرد وسیعی دارند شرح مختصری می‌دهیم.

سیرن

  • سیرن از یک ظرف محکم ساخته شده است که بوسیله لوله‌ای به تلمبه تراکم هوا مربوط می‌شود و می‌توان در آن هوای با فشار زیاد متراکم کرد. در قسمتی از سطح بالایی این ظرف دو صفحه فلزی گرد محور واحدی قرار دارند که بر روی آنها تعدادی سوراخ به یک فاصله از محور موجود است. صفحه پایین ثابت است و صفحه بالایی می‌تواند بر روی آن با سرعت زیاد دوران کند.

  • سوراخهایی که بر روی این دو صفحه موجود است، می‌توانند در مقابل یکدیگر قرار گیرند. ولی امتداد آنها در صفحه بالایی و پایینی برهم قرار ندارد و طوری است که وقتی هوایی با فشار زیاد از سوراخهای پایینی به دهانه سوراخهای بالایی می‌رسد، تغییر جهت و امتداد می‌دهد. و همین تغییر جهت حرکت هوا سبب می‌گردد که بر صفحه بالایی نیرویی اثر کند و آن را به چرخش در آورد. فرکانس صوتی که سیرن تولید می‌کند با تعداد سوراخهای صفحه دوّار (p) و نیز تعداد دوری که صفحه گردان سیرن در ثانیه دوران می کند (n) نسبت مستقیم دارد (f = pn). که در آن f فرکانس صوت می‌باشد.

  • معمولا بر روی سیرنها دستگاهی است که می تواند صوت حاصل را مشخص کند. ولیکن اگر تعداد سوراخها در صفحه بسیار زیاد و نیز فشار هوا یا بخار آب که در ظرف سیرن متراکم شده است، بسیار زیاد باشد، ارتعاشات ماورای صوت تولید می‌شود. به کمک این سیرنها امواجی تا فرکانس200 کیلو هرتز تولید کرده‌اند.

وتک گالتن

  • در سال 1883 نخستین بار گالتن متوجه امواج ماورای صوت شد. او با استفاده از لوله بسته‌ای که به کمک یک پیچ می‌توانست طول آن را تغییر دهد، ارتعاشات صوتی بسیار ریزی با فرکانس زیاد تولید کرد. و ضمن کاهش تدریجی طول لوله بسته متوجه شد که در هنگام دمیدن در آن صدایی را نمی‌شنود. ولیکن سگی که در نزدیکی وی بود عکس العمل نشان می‌دهد. همین موضوع او را متوجه امواج ماورای صوت کرد.

  • در سال 1900 میلادی آ. ادلمان سوتک گالین را کامل کرد و آن را به فرکانس حدود 170000 هرتز رسانید. در سال 1916 میلادی هارتمان بر اساس کارهای قبلی سوتکی ساخت که در آن هوای متراکم از یک سوراخ مخروطی شکل خارج و به دهانه لوله استوانه‌ای شکل که طول و قطر آن برابر است وارد می‌گردد و تولید صوت می‌کند. در سوتک هارتمان سرعت خروج هوا و برخورد آن به لوله سوتک بسیار زیاد و بیش از سرعت صوت است.



تصویر




نوسانگر مغناطیسی

این نوسانگرها براساس خاصیت ماگنتوستریکشن و استفاده از یک میدان الکتریکی متناوب ساخته می‌شود. خاصیت ماگنتوستریکشن عبارت است از تغییر شکل و تغییر حجم یک ماده مغناطیسی (آهن ، نیکل و کبالت) در اثر آهنربا شدن. ساده‌ترین تغییری که در اثر آهنربا شدن یک ماده مغناطیسی بررسی می‌شود تغییر نسبی طول یعنی Δl/l است. که در این رابطه Δl تغییر طول و ا طول اولیه ماده مغناطیسی است.

اگر میله ای از یک ماده مغناطیسی مانند نیکل را انتخاب کنیم و در اطراف آن یک سیم روپوش دار بپیچیم و آن را در یک مدار الکتریکی قرار دهیم، مشاهده می‌شود که هر گاه جریان الکتریکی از سیم پیچ بگذرد طول میله کوتاه می شود و پس از قطع جریان میله به طول اولیه خود باز می گردد. چنانچه بتوانیم به کمک یک رئوستا شدت جریان الکتریکی را افزایش دهیم، تغییر طول میله Δl بیشتر می شود.

ضمنا اگر جهت جریان الکتریکی را تغییر دهیم باز هم میله منقبض خواهد شد. مشخص می‌شود که کاهش طول میله که در اثر میدان مغناطیسی سیم پیچ و آهنربا شدن آن ظاهر می‌شود، به جهت میدان الکتریکی بستگی ندارد. ولیکن اندازه تغییر طول میله به اندازه شدت میدان الکتریکی بستگی دارد. در عمل نوسانگرهای مغناطیسی را به این ترتیب می‌سازند که به جای میله‌های نیکلی ورقه‌های نازک نیکلی که رویه‌ای از یک ماده عایق الکتریکی دارند، بکار می‌برند.

این ورقه ها را مانند آنچه در هسته‌های ترانسفورماتور مشاهده می‌کنیم بر روی یکدیگر قرار می‌دهند و به هم متصل می‌کنند. علت بکار بردن ورقه‌های نیکل به جای میله نیکل جلوگیری از جریانهای گردابی (جریان فوکو) است. ضمنا بجای آنکه فقط از یک سیم پیچ استفاده شود، دو سیم پیچ به دور هسته نیکلی پیچیده می‌شود، که از یکی جریان مستقیم و از سیم پیچ دیگر جریان متناوب عبور می‌کند.

نوسانگر پیزوالکتریک

  • خاصیت پیزوالکتریک عبارت است از ایجاد اختلاف پتاسیل الکتریکی در دو طرف یک بلور هنگامی که آن بلور تحت فشار یا کشش قرارگیرد و نیز انبساط و انقباض آن بلور هنگامی که تحت تأثیر یک میدان الکتریکی واقع شود.

  • پدیده پیزوالکتریک که در سال 1880 توسط پیرکوری کشف شد، نه تنها در تولید ارتعاشات ماورای صوت مورد استفاده قرار می‌گیرد، بلکه در بسیاری دیگر از ابزارها از جمله در میکروفونهای کریستالی ، پیک آپ گرامافون ، تولید نوسانهای الکتریکی و فندک بکار می‌رود. خاصیت پیزو الکتریک در بلورهای کوارتز ، تورمالین ، تاتارات سدیم و پتاسیم و تیتانات باریم مشاهده شده است.

ماورای صوت در صنعت

کاربرد ماورای صوت در تولید آلیاژها:


  • در به هم آمیختن فلزات برای تولید آلیاژهای مناسب از امواج ماورای صوت می توان بهره گرفت. روش استفاده به این ترتیب است که به نسبتی که می خواهیم آلیاژتهیه کنیم، فلزات مذاب را روی هم می ریزیم و آنها را در مسیر امواج با فرکانس زیاد قرار می دهیم. در این صورت جنبش مولکولی ذرات افزایش می یابد و فلزات با هم می آمیزند و در همین موقع است که مخلوط را به تدریج سرد می کنند و آلیاژ مورد نظر به دست می آورند.


 

  • اشمید وارت فیزیکدانان آلمانی از آزمایشهای خود درباره به هم آمیختن فلزات به نتایج جالبی رسیدند. آنها با عبور دادن ماورای صوت از دو فلز سرب و آلومینیوم آلیاژی تهیه کردند که قابلیت چکشخواری و مفتول شدن آن بسیار زیاد بود آنها توانستند سرب را به نسبت 25% در آلومینیوم پخش کنند. دانه های سرب پخش شده در آلومینیوم قطری در حدود 50 میکرون خواهد داشت.


 

تشخیص شکاف و حفره در فلزات:


پیش از این ، اشعه ایکس را برای تشخیص ترکیدگی و وجود حفره هایی هوایی در فلزات به کار می برند و لیکن در مورد قطعات خیلی ضخیم فلزات استفاده از این اشعه عملی نیست. زیرا اشعه ایکس جذب فلزات می شود اما با استفاده از امواج ماورای صوت با فرکانس بالا می توان محل شکاف یا حباب هوا را مشخص کرد.

سوراخ کردن مواد سخت:


چنانچه امواج ماورای صوت با فرکانس بالا را در یک نقطه خاص از یک فلز و یا یک بلور متمرکز کنیم انرژی این امواج سبب بالا رفتن دمای آن نقطه می گردد و در نتیجه ، آن نقطه ذوب شده و به آسانی سوراخ می گردد. برای سوراخ کردن مواد سخت مته های مخصوص به کار می برند دراین مته ها سرمته حرکت دورانی نداشته و تنها نوسان می کند.

سایر کاربردهای ماورای صوت در صنعت:


علاوه بر موارد بالا امواج ماورای صوت را برای تعیین ضخامت فلزی در موقع کار و نیز جوش دادن فلزات و نیمه هادیها به کار می برند. بعضی از انواع جوشکاری فقط به وسیله این امواج امکانپذیر است. برای نمونه در کپسول های فضایی بدنه داخلی از فولاد کرم نیکل و بدنه خارجی از آلومینیوم است که این دو قطعه به کمک امواج ماورای صوت انجام می شد.

+ نوشته شده در  سه شنبه سی ام خرداد 1385ساعت 3:57  توسط امیر شمس  |